

GEOINFO 2008 X Brazilian Symposium on GeoInformatics

Spatial relations across scales in land change models

08 – 10 of December, Rio de Janeiro - RJ - Brazil

Evaldinolia Gilbertoni Moreira (INPE / CEFET-MA) Ana Paula Aguiar (INPE)

Sérgio Costa (INPE)

Gilberto Câmara (INPE)

Introduction

Regional dynamics impact and are impacted by local dynamics through *top-down* and *bottom-up* interactions

[Verburg, Schot, Dijst et al. 2004]

Multi-scale land change models

"it is impossible today, more than ever, to understand what happens in one place without considering the interests and conflicting actions at different geographical scales" Becker [2005]

Multi-scale land change models

. . . .

Multi-scale land change models

. . . .

Spatial scale geographic objects represented

Adapted from Câmara [2004_]

Spatial scale geographic objects represented

Adapted from Câmara [2004_]

Objective

To conceptualize the spatial relations between pairs of *Entities* at different scales to allow a broad representation of *top-down* and *bottom-up* interactions in land change models

Spatial relations across scales in land change models

A) Hierarchical spatial relations

(a) Environmental Modeler [Engelen, White and Nijs 2003]

(b) CLUE model [Veldkamp and Fresco 1996]

Spatial relations across scales in land change models

B) Hierarchical networks relations

Source: IBGE (2008)

Spatial relations across scales in land change models

C) Networks-based relations

Links to global and continental markets: International flow of wood from Amazonia (source: Greenpeace, www.greenpeace.org)

"Land change processes are also intimately linked to processes of globalization" Verburg et al. [2004]

Conceptualize the spatial relations

Graph G

Node 1

Hierarchical spatial relation strategies

lower Entities

a) Simple

b) ChoseOne

c) KeepInBoth

spatial operator:

"within" or "coveredby" or "equals" spatial operator:

"intersection"

Hierarchical spatial relations implementation

- Terralib GIS library [Câmara et al, 2000]
- Added to the library as an extension of the GPM [Aguiar et al, 2003]

Hierarchical spatial relation strategies

Hierarchical networks relations

Strategies: attribute based

COD_1B	MOME_1B	COD_1C	NOME_1C	27 ⁻ 000	NOME_2C	COD_3A	NOME_3A	COD_4A	NOME_4A	COD_4B	NOME_4B
150140 B	Belém	150420	Marabá	150613	Redenção	150270	Conceição	o do Araguaia		170600	Couto de Magalhães
150140 E	Belém	150420	Marabá	150613	Redenção	6.0		150808	Tucumã	150543	Ourilândia do Norte
150140 E	Belém 💮	150420	Marabá	150613	Redenção			150808	Tucumã	150730	São Félix do Xingu
150140 E	Belém	150420	Marabá	150613	Redenção			150840	Xinguara	150034	Água Azul do Norte
150140 E	Belém	150420	Marabá	150613	Redenção			150840	Xinguara		Sapucaia
150140 E	Belém	150420	Marabá	150613	Redenção					150125	Bannach
150140 E	Belém 💮	150420	Marabá	150613	Redenção					150276	Cumaru do Norte
150140 E	Belém	150420	Marabá	150613	Redenção					150304	Floresta do Araguaia

Construction strategies based on Generalized Proximity Matrices (GPM)

Networks-based relations strategies

- Multi-scale Closed-networks
 - □ connect entities at different scales using networks in which the entrances and exits are restricted to its nodes
 - Encompass *logical* and some types of *physical networks*
- Multi-scale Open-networks
 - □ connect entities at different scales using networks in which any location is entrance or exit point
 - Always physical networks

Networks-based relations Implementation

Networks-based relations strategies

Networks-based relations implementation

Study Case: Multiscale land change model for the Brazilian Amazonia

- (a) National level the main markets for Amazonia products (Northeast and São Paulo) and the roads infrastructure network;
- (b) Regional level for the whole Brazilian Amazonia, 4 million km2;
- (c) Local level for a hot-spot of deforestation in Central Amazonia, the Iriri region, in São Felix do Xingu, Pará State, 50 mil km2.

 Aguiar [2006] and Moreira et al [2008]

Used strategies

■ KeepInBoth

□ Used a hierarchical relation to provide the spatial support to dynamically link the two nested grids at 25 x 25 km² and 1 x 1 km² resolutions

■ Multi-scale Open-network

□ Connect the regional scale 25 x 25 km² cells to the main places of consumption at the national scale (São Paulo and Northeast)

Used strategies

- Relationship (from cell to market) *n*:2
- Each cell receives as attribute *conn_markets* the minimum *weight* value stored in G according to the roads network at that time
- Connection to markets variable: remote influence between São Paulo and their most connected cells

Land change models

Regional model

- ☐ Goals was to explore the hypothesis that connection to national markets through roads infrastructure is a key factor to explain the distribution of deforestation in the region.
- ☐ Model projects the percentage of deforestation used a statistical allocation procedure based on regression models adapted from the CLUE model by Aguiar [2006]

Local model

☐ Given that a certain amount of pressure is projected for the Iriri by the regional model, how would local patterns of occupation evolve?

CLUE model[Veldkamp and Fresco 1996]

agent-based deforestation model [Moreira, Costa, Aguiar et al. 2008]

Land change models

■ Interaction among models

- ☐ The *top-down* interaction: consists of the regional model signalling an expected demand for change at the Iriri.
 - Demand is calculated as a function that sums-up the deforested area (fathercells) at the regional scale and sends it to the local scale.
- □ A *bottom-up feedback mechanism* sends this information back to the larger scale and thus modifies the macro scale model corresponding cells.

CLUE model [Veldkamp and Fresco 1996]

agent-based deforestation model [Moreira, Costa, Aguiar et al. 2008]

Final Remarks

- This paper discussed and conceptualized the use of multiscale spatial relations in land change models
- Two types of relations were presented: hierarchical and network-based
- Multi-scale land-change models are often based on hierarchical relations, using nested objects at different scales
- We argue that combining hierarchical relations with network-based relations provide a comprehensive conceptual framework to include top-down and bottom-up interactions and feedbacks in multi-scale land-change models

Final Remarks

- Network-based relations can represent remote influences in the land use system. This has a growing importance in a globalized economy, in which places of consumption and production are increasingly separated
- Land systems cannot be adequately understood without knowing the linkages of different areas to decisions and structures made elsewhere
- We exemplified the use of such relations in a multi-scale land change model for the Brazilian Amazonia.

Acknowledgements

